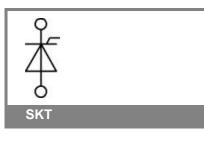
SKT 2400

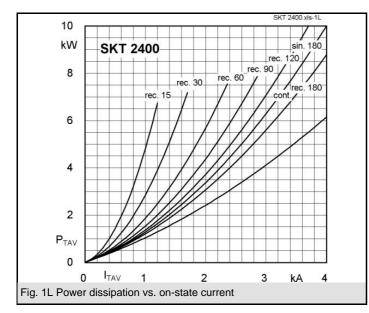
Capsule Thyristor

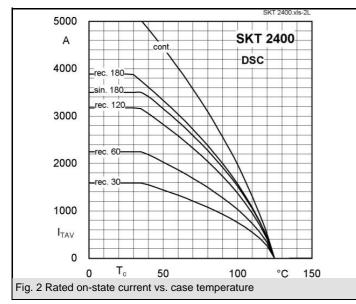
Line	Thyristor
------	-----------

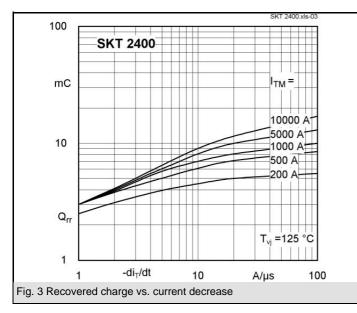
SKT 2400

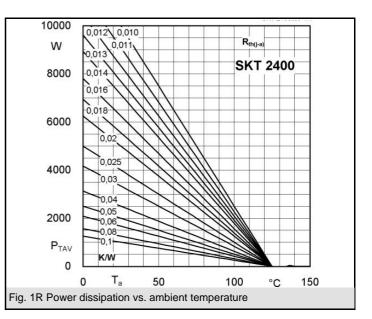
Features

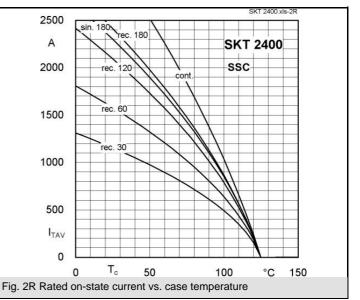

- Hermetic metal case with ceramic insulator
- Capsule package for double sided cooling
- Shallow design with single sided cooling
- Off-state and reverse voltages up to 1800 V
- Amplifying gate

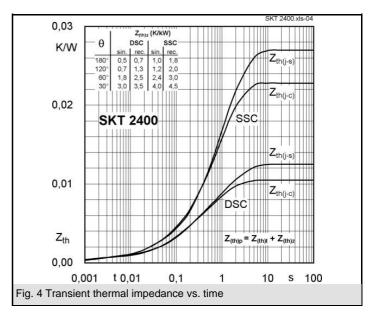

Typical Applications

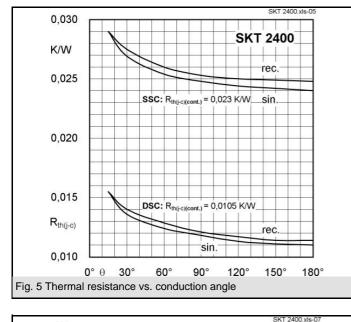

- DC motor control (e. g. for machine tools)
 Controlled rectifiers
- (e. g. for battery charging)
- AC controllers (e. g. for temperature control)
- Soft starters for AC motors
- Recommended snubber network e. g. for $V_{VRMS} \leq 400$ V: R = 33 $\Omega/32$ W, C = 1 μF

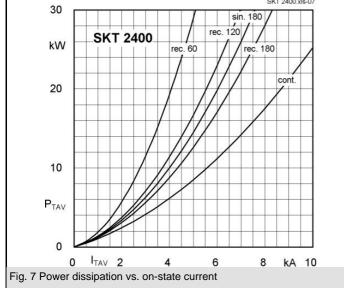

V _{RSM}	V _{RRM} , V _{DRM}	I _{TRMS} = 5700 A (maximum value for continuous operation)		
V	V	I _{TAV} = 2400 A (sin. 180; DSC; T _c = 76 °C)		
1300	1200	SKT 2400/12E		
1500	1400	SKT 2400/14E		
1700	1600	SKT 2400/16E		
1900	1800	SKT 2400/18E		

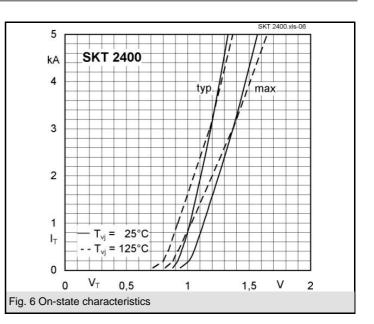

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 100 (85) °C;	1520 (2100)	А
I _D	2 x N4/250; T _a = 45 °C; B2 / B6	2650 / 3700	А
I _{RMS}	2 x N4/250; T _a = 45 °C; W1C	3000	А
I _{TSM}	T _{vi} = 25 °C; 10 ms	55000	Α
	T _{vj} = 125 °C; 10 ms	47000	А
i²t	T _{vj} = 25 °C; 8,3 10 ms	15125000	A²s
	T _{vj} = 125 °C; 8,3 10 ms	11000000	A²s
V _T	T _{vj} = 25 °C; I _T = 3000 A	max. 1,37	V
V _{T(TO)}	T _{vi} = 125 °C	max. 0,88	V
r _T	T _{vj} = 125 °C	max. 0,164	mΩ
I _{DD} ; I _{RD}	T_{vj} = 125 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 100	mA
t _{gd}	T _{vj} = 25 °C; I _G = 1 A; di _G /dt = 1 A/µs	1	μs
t _{gr}	V _D = 0,67 * V _{DRM}	2	μs
(di/dt) _{cr}	T _{vi} = 125 °C	max. 150	A/µs
(dv/dt) _{cr}	T _{vi} = 125 °C	max. 1000	V/µs
t _q	T _{vi} = 125 °C ,	200 300	μs
I _H	T _{vj} = 25 °C; typ. / max.	500 / 1000	mA
I _L	T _{vj} = 25 °C; typ. / max.	2000 / 5000	mA
V _{GT}	T _{vi} = 25 °C; d.c.	min. 3	V
I _{GT}	$T_{vj} = 25 \text{ °C}; \text{ d.c.}$	min. 300	mA
V _{GD}	T _{vj} = 125 °C; d.c.	max. 0,25	V
I _{GD}	T _{vj} = 125 °C; d.c.	max. 10	mA
R _{th(j-c)}	cont.; DSC	0,0105	K/W
R _{th(j-c)}	sin. 180; DSC / SSC	0,011 / 0,024	K/W
R _{th(j-c)}	rec. 120; DSC / SSC	0,0118 / 0,025	K/W
R _{th(c-s)}	DSC / SSC	0,002 / 0,004	K/W
T _{vj}		- 40 + 125	°C
T _{stg}		- 40 + 130	°C
V _{isol}		-	٧~
F	mounting force	37 47	kN
а			m/s²
m	approx.	1000	g
Case		B 20	
		1	

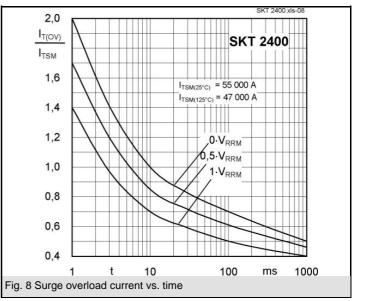




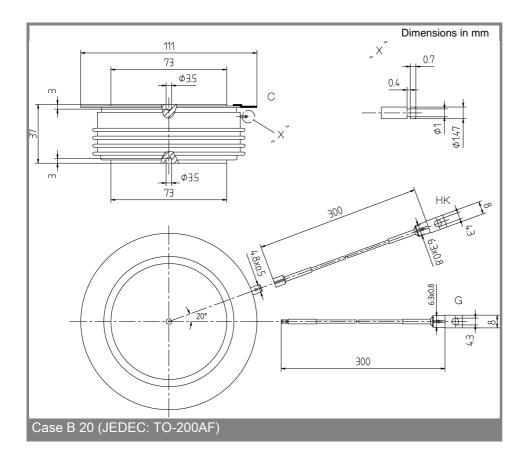








SKT 2400



SKT 2400.xls-09 100 SKT 2400 V 20V; 10Ω 10 20W (0,1 VGT BSZ -40°0 1 = 25°C 125°C. BMZ P_G(t_p) V_{GD(125°)} $V_{\rm G}$ GT IGD(125°) 0,1 I_{G} 0,001 0,01 0,1 1 10 A 100 Fig. 9 Gate trigger characteristics

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.